ZON Logo
Documentation
Docs
Essentials
Using ZON with LLMs

Using ZON with LLMs

Real-World Scenarios

1. The "Context Window Crunch"

Scenario: You need to pass 50 user profiles to GPT-4 for analysis.

  • JSON: 15,000 tokens. (Might hit limits, costs $0.15)
  • ZON: 10,500 tokens. (Fits easily, costs $0.10)
  • Impact: 30% cost reduction and faster latency.

2. The "Complex Config"

Scenario: Passing a deeply nested Kubernetes config to an agent.

  • CSV: Impossible.
  • YAML: 2,000 tokens, risk of indentation errors.
  • ZON: 1,400 tokens, robust parsing.
  • Impact: Zero hallucinations on structure.

LLM Retrieval Accuracy Testing

Methodology

ZON achieves 100% LLM retrieval accuracy through systematic testing:

Test Framework: benchmarks/retrieval-accuracy.js

Process:

  1. Data Encoding: Encode 27 test datasets in multiple formats (ZON, JSON, TOON, YAML, CSV, XML)
  2. Prompt Generation: Create prompts asking LLMs to extract specific values
  3. LLM Querying: Test against GPT-4o, Claude, Llama (controlled via API)
  4. Answer Validation: Compare LLM responses to ground truth
  5. Accuracy Calculation: Percentage of correct retrievals

Datasets Tested:

  • Simple objects (metadata)
  • Nested structures (configs)
  • Arrays of objects (users, products)
  • Mixed data types (numbers, booleans, nulls, strings)
  • Edge cases (empty values, special characters)

Validation:

  • Token efficiency measured via gpt-tokenizer
  • Accuracy requires exact match to original value
  • Tests run on multiple LLM models for consistency

Results: 100% accuracy across all tested LLMs and datasets

Run Tests:

node benchmarks/retrieval-accuracy.js

Output: accuracy-results.json with per-format, per-model results